

Humidity Theory, Terms, & Tips

Webinar Presenters & Humidity Experts

Bruce McDuffee

Michael Boetzkes

Agenda & Takeaways

Agenda

- Common Humidity Parameters
 Measurement Tips
- 2. Deep Dive RH
- 3. Temperature effect
- 4. Pressure effect

Takeaways for a Better Measurement

- Learn the fundamentals of humidity theory to support better measurement
- Know the different terms used to define the amount of water vapor present in a moist gas
- Find out which term or parameter is best for your application
- Know how to make a better measurement of humidity by understanding the effects of temperature and pressure

Poll

- What is your industry?
 - Pharmaceutical and Biotech
 - Heavy manufacturing
 - Food production
 - HVAC contractor
 - Consultant
 - Other

Poll

- What is your level of expertise?
 - Expert
 - I know enough to get the job done, but want to learn more
 - This is my first humidity lesson

Common Humidity Parameters

Humidity Terms & Definitions

Relative Humidity
Dew/Frost Point
Mixing ratio/Humidity ratio
ppm_v
Wet bulb

Definition of Dew Point Temperature

- Dew point temperature is the temperature at which water vapor will begin to condense.
- The temperature at which a moist gas is saturated over a plane surface of pure liquid water.

Tip – Dew point temperature does not change as temperature changes.

What about Frost Point?

• The temperature at which a moist gas is saturated over a plane surface of pure ice.

Tip – Dew point is lower than frost point (by about 4C at -40)

Dew Point Measurement Tips

Tip – dew point changes with pressure, not with temperature

- Use Dew point when condensation is a concern
- Use Dew point when measuring in very dry conditions
- Use Dew point when pressure varies in a closed system

Mixing Ratio or Humidity Ratio

- ratio of the mass of water vapor present to the mass of dry air present.
- this is an absolute measure which will not vary with temperature or pressure variations

Units

grams/kilogram grains/pound

Mixing Ratio Measurement Tip

Tip – mixing ratio is an absolute measure, does not change with temperature or pressure

 Use Mixing Ratio for drying applications like paper or food

Wet bulb temperature

- Wet bulb temperature is a measure of the air temperature as water evaporates and is proportional to the relative humidity.
- Wet bulb is measured with a thermometer wrapped in a wet sock.

• Depending on the relative humidity, wet bulb will vary as the rate of

evaporation varies.

rotronic
MEASUREMENT SOLUTIONS

Wet Bulb Measurement Tip

Tip – many variables and inconsistent operation make this measurement prone to high error

- Use wet bulb when you don't have access to power
- Use wet bulb for evaporative cooling

Parts per Million (PPM_v)

- the volume of water vapor to the total volume of the dry gas
- mass of water vapor per total mass of dry gas
- an absolute measure, not affected by temperature or pressure

$$PPM_{v} = \frac{P_{w}}{(P_{tot} - P_{w})} 10^{6}$$

$$PPM_{m} = \frac{M_{w}P_{w}}{M_{d}(P_{tot} - P_{w})}10^{6}$$

Mw is molecular mass of water; Md is molecular mass of dry air

PPM Measurement Tip

Tip – ppm is calculated from T, RH, Pressure

- Use ppm for trace moisture applications like a glove box
- Use ppm when you need precise measurement of air content like a cleanroom

Relative Humidity

Saturation Vapor Pressure (p_s)

The saturation vapor pressure is the pressure of a vapor when it is in equilibrium with the liquid phase. It is solely dependent on the temperature. As temperature rises the saturation vapor pressure rises as well. - CMMAP.org

Relative Humidity – bucket analogy

RH = p/p_s p=partial pressure p_s =saturation pressure

1 gallon bucket 1 gallon of water RF = 100%

Relative Humidity

RH = p/p_s p=partial pressure p_s =saturation pressure

- Quiz which is not true
 - SVP changes with pressure
 - SVP changes with temperature
 - Relative humidity changes with temperature
 - Partial pressure changes with pressure
 - Humidity is fun

Which parameter do you measure?

- Relative Humidity
- Dew Point
- Frost Point
- Parts per million
- Mixing ratio
- Wet bulb
- Other

Comments & Questions

If we don't get to your question today, we'll respond via email after the webinar.

RH Requires Uniform Temperature

- RH sensors are very sensitive to temperature.
- Measurement probe must be uniform temperature.
- Measurement point must be representative.

p=partial pressure p_s=saturation pressure

Why is temperature so critical?

- p (partial pressure) does not change as the temperature changes.
- p_s does change as temperature changes

RH =
$$p/p_s$$

p=partial pressure
p_s=saturation pressure

T	р	p _s	RH	Δ
40 °C	40 hPa	73.8 hPa	54.2%	
39 ℃	40 hPa	69.9 hPa	57.2%	+ 3.0%
41 °C	40 hPa	77.8 hPa	51.4%	- 2.8%
38 ℃	40 hPa	66.3 hPa	60.3%	+ 6.1%
42 °C	40 hPa	82 hPa	48.8%	- 5.4%

The RH Measurement Challenge

Non-representative sources of heat or cold

 Non-uniform temperature between measurement device and gas being measured.

T = 40C

RH = 50%

T = 39C [3% error] What is the meter reporting? T = 23C

RH = 30%

Causes of the Temperature Effect

- Standing too close to the point of measurement
- Holding the probe in your hand
- Probe is colder or warmer than the ambient air
- Probe is in mixed air temperatures
- Not waiting long enough for temperature equilibrium
- Cooling fans for equipment
- Direct air flow from HVAC

Quiz

- True or False
 - As temperature increases, relative humidity will increase

Rules of Thumb Relative Humidity

Takeaway for better measurement:

- Temperature must be uniform and representative.
- As temperature rises, RH decreases.
- As temperature goes lower, RH increases.
- As pressure in a closed container increases, RH increases
- As pressure in a closed container decreases, RH decreases

Pressure Effects?

RH and Pressure (closed container)

- p (partial pressure) does change as the pressure changes.
- p_s does not change as pressure changes.

RH =
$$p/p_s$$

p=partial pressure
 p_s =saturation pressure

Pressure Effects on Parameters

- Relative humidity yes
- RH measurement yes and no
- Dew point yes
- Wet bulb temperature yes
- Mixing ratio no
- PPM no

Pressure tips for making a better measurement

- Know if your instrument is measuring or calculating.
- Know what the calculation is based on; pressure or ambient, dew or frost.
- Know if pressure differences will change the measurement.

Quiz

- True or False
 - As pressure decreases Dew Point temperature increases

Summary of Takeaways

Takeaways for a Better Measurement

- Learn the fundamentals of humidity theory to support better measurement
- Know the different terms used to define the amount of water vapor present in a gas
- Find out which term or parameter is best for your application
- Know how to make a better measurement of humidity by understanding the effects of temperature and pressure

Comments & Questions

If we don't get to your question today, we'll respond via email after the webinar.

Next Webinars

Humidity Measurement Technology Pros & Cons

Thursday, December 21, 1:00PM EST

Register at rotronic-usa.com/webinars

How to Choose a Best-fit Humidity Instrument

Thursday, January 18, 1:00PM EST

Register at rotronic-usa.com/webinars

Thank you!

email: info@rotronic-usa.com

Rotronic: <u>www.rotronic.com</u>

On Demand Webinars – Measurement Academy

www.rotronic-usa.com/academy

