

Relative Humidity & Dew Point, The Basics

Webinar Presenters & Humidity Experts

Bruce McDuffee

Michael Boetzkes

David Love

Agenda & Takeaways

Agenda

- Why RH & Dew Point
- Relative Humidity Theory
- Dew Point Theory
- Make a Better Measurement

Takeaways

- Knowledge helps avoid poor processes
- Temperature & RH
- Pressure & Dew Point
- Know what your sensor is measuring

Why RH & Dew Point?

- 90% of humidity instrument's sensors react to RH or dew point.
- RH sensors are problematic because of sensitivity to temperature variances.
- Dew point is the least understood parameter.

Other Parameters

Mixing ratio

Absolute humidity

Vapor pressure

Frost point Enthalpy

ppm_v Wet bulb

www.rotronic-usa.com/humidity-academy/humidity-measurement-tools/

Relative Humidity Theory

Takeaway for better measurement:

- Temperature must be uniform and representative.
- As temperature rises, RH decreases.
- As temperature goes lower, RH increases.
- As pressure in a closed container increases, RH increases
- As pressure in a closed container decreases, RH decreases

Partial Pressure of Water Vapor (p)

aka vapor pressure

Dalton's Law of Partial Pressures:

 The total pressure of a gas mixture is equal to the sum of the partial pressures of the individual gas components.

$$P_t = P_1 + P_2 + P_3 + P_n$$

John Dalton

Saturation Vapor Pressure (p_s)

The saturation vapor pressure is the pressure of a vapor when it is in equilibrium with the liquid phase. It is solely dependent on the temperature. As temperature rises the saturation vapor pressure rises as well. - CMMAP.org

Relative Humidity

RH = p/p_s p=partial pressure p_s =saturation pressure

Why is temperature so critical?

- p (partial pressure) does not change as the temperature changes.
- p_s does change as temperature changes

RH =
$$p/p_s$$

p=partial pressure
 p_s =saturation pressure

T	р	p _s	RH	\triangle
40 °C	40 hPa	73.8 hPa	54.2%	
39 ℃	40 hPa	69.9 hPa	57.2%	+ 3.0%
41 °C	40 hPa	77.8 hPa	51.4%	- 2.8%
38 ℃	40 hPa	66.3 hPa	60.3%	+ 6.1%
42 °C	40 hPa	82 hPa	48.8%	- 5.4%

Temperature Effects

 $T = 42^{\circ}C$ p = 40 hPa $p_s = ?$ RH = ?Increase $T = 50^{\circ}C$ $p = p_s = ?$ RH = ?

RH and Pressure (closed container)

- p (partial pressure) does change as the pressure changes.
- p_s does not change as pressure changes.

RH =
$$p/p_s$$

p=partial pressure
 p_s =saturation pressure

Pressure Effects (closed container)

T = 42°C p = 40 hPa $p_s = 80 \text{ hPa}$ RH = 50%Pressure = 1013 hPa

Increase P 2x = 2026 hPa T = 42°C p = p_s = ? RH = ?

Hint: Dalton's Law

$$P_t = P_1 + P_2 + P_3 + P_n$$

The RH Measurement Challenge

Non-representative sources of heat or cold

 Non-uniform temperature between measurement device and gas being measured.

Comments & Questions

Please type your questions into the chat box at the lower left portion of your screen.

Dew Point Theory

Takeaway for better measurement:

- Know if your instrument is measuring or calculating.
- Know what the calculation is based on; pressure or ambient, dew or frost.
- Pressure differences will change the measurement.

Definition of Dew Point Temperature

- Dew point temperature is the temperature at which water vapor will begin to condense.
- The temperature at which a moist gas is saturated over a plane surface of pure liquid water.

Takeaway – Dew point temperature does not change as temperature changes.

What about Frost Point?

• The temperature at which a moist gas is saturated over a plane surface of pure ice.

Note – Dew point is lower than frost point (by about 4C at -40).

Dew Point & Pressure

- As pressure increases, dew point temperature goes up towards saturation.
- As pressure decreases, dew point temperature drops.

5	The St.	
1		

PSI	Dew point	Frost point
90	-41.1C	-37.6C
100	-40C	-36.6C
110	-39.1C	-35.8C

When to use Dew Point?

- Goal is to avoid condensation
- Very dry application (< 10% RH)
- Compressed air systems

Takeaways for a Better Measurement

RH Requires Uniform Temperature

- RH sensors are very sensitive to temperature.
- Measurement probe must be uniform temperature.
- Measurement point must be representative.

 $RH = p/p_s$

p=partial pressure p_s=saturation pressure

Relative Humidity – Rules of Thumb

- As temperature increases, RH decreases
- As temperature decreases, RH increases

In a closed container:

- As pressure increases, RH increases
- As pressure decreases, RH decreases

Dew Point

- Dew point changes with pressure.
- Dew point does not change with temperature.
- Ensure pressure is consistent with point of interest.
- Use dew point when condensation is a concern or in very dry gas.

Comments & Questions

If we don't get to your question today, we'll respond via email after the webinar.

Humidity Academy

- Resources for making a better measurement
 - Psychrometric charts
 - Technical notes
 - Humidity calculator
 - Application notes
 - more

www.rotronic-usa.com/humidity-academy

Next Webinar

Pros and Cons of Humidity Measurement Technologies

- Thursday, September 17th
- Register at <u>www.rotronic-usa.com/humidity-webinars</u>
- We'll cover these humidity measurement technologies;
 - chilled mirror
 - resistive
 - capacitive
 - psychrometer (wet-bulb/dry-bulb)
 - mechanical
 - metal oxide

Helping you make a better humidity measurement – and more.

Your source for:

- Humidity transmitters, meters, generators
- HVAC humidity, temperature, CO2, diff-press
- Portable meters; humidity, dew point, CO2
- Data loggers for mapping and monitoring
- Water activity transmitters, testers, meters
- NVLAP Accredited calibrations humidity & temperature

Post webinar survey

Please fill out the survey.

As a 'thank you' for attending, you'll get a free copy of NPL Guide.

Thank you!

email: info@rotronic-usa.com

Rotronic US: www.rotronic-usa.com

Rotronic Canada: www.rotronic.ca

Outside Americas: www.rotronic.com

On-demand webinars and registrations:

www.rotronic-usa.com/humidity-webinars

