

Uncertainty in Humidity Measurement

Helping you make a better measurement.

Webinar Presenters

Bruce McDuffee

Michael Boetzkes

Agenda

- Terms & Definitions
- Understand the Uncertainty of Your Instrument
- Understanding the Uncertainty on the Calibration Certificate
- How to Avoid the Dreaded O.O.T.
- Final Q&A

The Truth About Measurement

- There is no such thing as a true or perfect measurement.
- A proper measurement result is incomplete without a statement of uncertainty.
- Knowing the uncertainty helps us determine the fitness of the measurement
- Understanding uncertainty is the first step to reducing it.

Accuracy

"closeness of agreement between a measured quantity value and a true quantity value of a measurand"

- Measurand quantity intended to be measured
- Measured Quantity Value quantity value representing a measurement result
- True Quantity Value quantity value consistent with the definition of a quantity
- Quantity Value number and reference together expressing magnitude of a quantity, for example 5 °C, 543 meters

Error

- Error is the difference between the measured value and the 'true value' of the thing being measured.
- Like 'accuracy', it is qualitative, not quantitative

Uncertainty

- "Uncertainty is the quantification of the doubt about the measurement result."
- "A calculated statement concerning the level of confidence in a reported measurement."

Statement of Uncertainty:

50 %RH ± 1 %RH k=2

Understanding the Uncertainty of the Humidity Instrument

Calculating the Instrument Uncertainty

- Instrument Calibration
- Resolution
- Long term drift
- Temperature effects
- Hysteresis
- Linearity (accuracy)
- Sensitivity to contamination

Calculating the Instrument Uncertainty

Uncertainty Contributor	Uncertainty (U)	Distribution	Divisor	Standard Uncertainty (u)	Comment
Accuracy	0.8 %RH	Rectangular	1.732	0.462	From Data Sheet
					From Calibration
Calibration Uncertainty	0.5 %RH	Normal	2	0.250	Certificate
Annual Drift	1.0 %RH	Rectangular	1.732	0.577	From Data Sheet

Combined Uncertainty 0.780

Expanded Uncertainty k=2 ±1.6 %RH

Level of Confidence	Coverage Factor (k)
68.27%	1
90%	1.645
95%	1.96
95.45%	2
99%	2.576
99.73%	3

$$U = k \sqrt{u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2 \dots}$$

Impact of the Instrument Uncertainty

- Each instrument is unique in behavior
- Environmental factors can change drift characteristics
- Understand the impact of calibrations

Understand total instrument performance!

Comments & Questions

If we don't get to your question today, we'll respond via email after the webinar.

Calibration Certificate Uncertainty

Divided Flow System with Chilled Mirror

Test Point: 80 %RH at 23 °C

Temperature Sensitivity 4.96 %RH/°C

								Standard	% of Total
						Standard	Sensitivity	Uncertainty	Expanded
Reference	Uncertainty Source	Value	Units	Distribution	Divisor	Uncertainty	Coefficient	(%RH)	Uncertainty
1	Chilled Mirror Uncertainty	0.05	°C	Normal	2	0.025	4.96	0.124	18%
2	Chilled Mirror Drift (1 year)	0.04	°C	Rectangular	1.732	0.023	4.96	0.115	16%
3	Temperature Uncertainty	0.007	°C	Normal	2	0.004	4.96	0.018	3%
4	Repeatability of humidity	0.10	%RH	Normal	1	0.100	1	0.100	14%
5	Chamber temperature gradients	0.05	°C	Rectangular	1.732	0.029	4.96	0.143	20%
6	Temperature stabilization	0.01	°C	Rectangular	1.732	0.003	4.96	0.014	2%
7	Temperature repeatability	0.05	°C	Normal	1	0.050	4.96	0.248	35%
8	Humidity stabilization	0.05	%RH	Rectangular	1.732	0.029	1	0.029	4%
9	Humidity fluctuations	0.05	%RH	Rectangular	1.732	0.029	1	0.029	4%

Standard Uncertainty	0.350	_
Expanded Uncertainty (95% confidence level)	0.70	

Divided Flow System with Internal Probe

Test Point: 80 %RH at 23 °C

Temperature Sensitivity

4.96 %RH/°C

Reference	Uncertainty Source	Value	Units	Distribution	Divisor	Standard Uncertainty	Sensitivity Coefficient	Standard Uncertainty (%RH)	% of Total Expanded Uncertainty
1	Reference Probe Uncertainty	1.10	%RH	Normal	2	0.550	1	0.550	32%
2	Reference Probe Drift	1.00	%RH	Rectangular	1.732	0.577	1	0.577	34%
3	Reference Probe Resolution	0.05	%RH	Rectangular	3.464	0.014	1	0.014	1%
4	Repeatability of humidity	0.10	%RH	Normal	1	0.100	1	0.100	6%
5	Chamber temperature gradients	0.05	°C	Rectangular	1.732	0.029	4.96	0.143	8%
6	Temperature stabilization	0.01	°C	Rectangular	1.732	0.003	4.96	0.014	1%
7	Temperature repeatability	0.05	°C	Normal	1	0.050	4.96	0.248	15%
8	Humidity stabilization	0.05	%RH	Rectangular	1.732	0.029	1	0.029	2%
9	Humidity fluctuations	0.05	%RH	Rectangular	1.732	0.029	1	0.029	2%

Standard Unce	ertainty 0.854	
Expanded Uncertainty (95% confidenc	e level) 1.71	

Why is Uncertainty Important

- Required for Metrological Traceability
- Insight into the quality of the calibration
- Makes the difference between instrument meeting manufacturer specification or not!

Divided Flow with Chilled Mirror

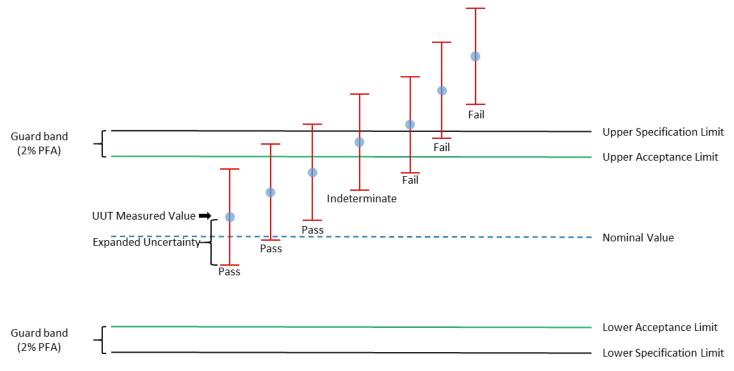
Parameter	U	Distribution	Divisor	Standard Uncertainty	Comment
Accuracy	0.8	Rectangular	1.732	0.462	From Data Sheet
Calibration Uncertainty	0.7	Normal	2	0.350	From Calibration Certificate
Annual Drift	1	Rectangular	1.732	0.577	From Data Sheet

Combined Uncertainty 0.818

Expanded Uncertainty k=2 ±1.7 %RH

Divided Flow with Internal Probe

				Standard	
Parameter	U	Distribution	Divisor	Uncertainty	Comment
Accuracy	0.8	Rectangular	1.732	0.462	From Data Sheet
					From Calibration
Calibration Uncertainty	1.71	Normal	2	0.855	Certificate
Annual Drift	1	Rectangular	1.732	0.577	From Data Sheet


Combined Uncertainty 1.130

Expanded Uncertainty k=2 ±2.3 %RH

Taking Uncertainty into Account

- Uncertainty of measurement leads to risk of False Accept
- Guardband methods available to define and limit the risk
- Creates 3rd option for result: Indeterminate

How to Avoid the Dreaded OOT

Causes of OOT

- Instrument/Sensor Drift
- Accuracy specification used instead of 1-year uncertainty
- Previous calibration was not suitable

Typically can be traced back to an error in or lack of uncertainty analysis!

Avoiding OOT

- Know the sensitivities of the instrument
- Use the Long Term Uncertainty as the acceptance limit
- Ensure appropriate calibration provider can provide suitable calibration uncertainties

Takeaways

- 1. Instrument performance is more than just an accuracy specification
- 2. Two instruments of the same model can have different measurement uncertainties
- 3. OOT results can be reduced by understanding the instrument uncertainty

Comments & Questions

If we don't get to your question today, we'll respond via email after the webinar.

Measurement Academy

- Resources for making a better measurement
 - Psychrometric charts
 - Technical notes
 - Humidity calculator
 - Application notes
 - More

www.rotronic-usa.com/academy

Next Webinar

Dew Point Temperature in Compressed Air

Thursday, October 19th 1:00PM EDT

Register at www.rotronic-usa.com/webinars

Post webinar survey

Thank you!

email: info@rotronic-usa.com

Website: www.rotronic.com

Future webinar registrations & on-demand viewing:

www.rotronic-usa.com/webinars

