

Interpreting Humidity Instrument Specifications

Helping you make a better measurement.

Webinar Presenters & Humidity Experts

Bruce McDuffee

Michael Boetzkes

David Love

Agenda & Learning Objectives

- Examine the metrological meaning of Accuracy
- See how specifications use the term Accuracy
- Looking beyond "Accuracy"
 - Initial performance
 - Long Term Drift (performance after a period of time)
 - Measurements away from the calibration temperature points
- How to compare instruments

What is Accuracy?

Choose the best answer:

- A. The closeness of a measurement to the true value
- B. Closeness of agreement between a measured quantity value and a true quantity value of a measurand
- C. the condition or quality of being true, correct, or exact; freedom from error or defect; precision or exactness; correctness
- D. A numerical indication of the overall performance of an instrument during the manufacturer's recommended calibration interval

Accurate Definition of Accuracy

The VIM (BIPM - International vocabulary of metrology – Basic and general concepts and associated terms)

"closeness of agreement between a measured quantity value and a true quantity value of a measurand"

Bureau international des poids et mesures

Accurate Definition of Accuracy

"closeness of agreement between a measured quantity value and a true quantity value of a measurand"

- Measurand quantity intended to be measured
- Measured Quantity Value quantity value representing a measurement result
- True Quantity Value quantity value consistent with the definition of a quantity
- Quantity Value number and reference together expressing magnitude of a quantity, for example 5 °C, 543 meters

Bureau international des poids et mesures

What does NIST say?

TN1297 Appendix D (reference to VIM)

 "closeness of the agreement between the result of a measurement and the value of the measurand"

NIST Comments:

- Accuracy is a qualitative concept
- One should not use accuracy quantitatively, that is, associate numbers with it; numbers should be associated with measures of uncertainty instead.

Common Misconceptions

- Accuracy specification covers everything.
- The other values on the data sheet are all included in the accuracy specification.
- Instrument says accuracy is +/-1% RH then I can expect the error to be less than 1% RH when I send it in for calibration next year.
- The instrument can be used at any temperature and still has an accuracy of 1% RH.

$$U = k\sqrt{u1^2 + u2^2 + u3^2 + u4^2 + u5^2}$$
.....

What does the accuracy specification mean?

Manufacturing limit of difference between the Unit Under Test and the Reference

- Typically includes
 - Linearity
 - Repeatability
 - Hysteresis
- Typically ignores
 - Reference uncertainty
 - Long term drift

Comments & Questions

If we don't get to your question today, we'll respond via email after the webinar.

Looking Beyond Accuracy

- Other key parameters
 - Calibration uncertainty
 - Long term drift
 - Temperature compensation
- Often need to look beyond the webpage specifications
 - Data sheets
 - Product/User manuals
 - Ask the manufacturer
 - Calibration certificate

Calibration Uncertainty

- Provides context to "Accuracy" specification.
- Every measurement has uncertainty (even NIST)
- A key part of the traceability of a measurement
- It is the indication of how the accuracy of measurements have degraded through the chain of calibrations going back to NIST and essentially back to SI.

Drift

- All instruments will drift but not all by the same amount
- Not always on the datasheet

Common Causes of Drift in Relative Humidity

Particulate

- Dust Slowing down of response time (increase hysteresis)
- Salts Create a salt solution on sensor surface increases local humidity
- Protection mechanical filters

Vapor

- Outgassing of products in chambers may effect dielectric in sensors, or cause delamination.
- Protection high quality sensors tested for the chemical

Drift in RH Sensors Caused by Chemicals

- Chemical resistance guides
 - Specify allowable concentrations of chemicals
 - Found in user manuals

Pollutant	Formula		Allowed Concentration Continuous Operation		
		ppm	mg/m ³		
Acetic acid	CH ₃ COOH	800	2000		
Acetone	CH ₃ COOH ₃	3300	8000		
Ammonia	NH ₃	5500	4000		
2-Butanone (MEK)	C ₂ H ₅ COCH ₃	3300	8000		
Chlorine	Cl ₂	0.7	2		
Ethanol	C ₂ H ₅ OH	3500	6000		
Ethyl acetate	CH ₃ COOC ₂ H	4000	15000		
Ethylene glycol	HOCH ₂ CH ₂ OH	1200	3000		
Ethylene oxide	C ₂ H ₄ O	3			
Formaldehyde	НСНО	2400	3000		
Hydrochloric acid	HCI	300	500		
Hydrogen sulfide	H ₂ S	350	500		
Isopropanol	(CH ₃) ₂ CHOH	4800	12000		
Methanol	CH ₃ OH	3500	6000		
Nitrogen oxides	NO _X	5	9		
Ozone	O ₃	0.5	1		
Petrol	5- 1		150000		
Sulfur dioxide	SO ₂	5	13		
Toluene	C ₆ H ₅ CH ₃	1300	5000		
Xylene	C ₆ H ₅ (CH ₃) ₂	1300	5000		

Temperature Compensation

- Specifications usually provide accuracy at a single temperature or small range (+/-5 °C)
- Error increases outside of this range
- Examples:
 - +0.02%RH per Kelvin dependent on the process and electronics temperature (for a deviation of 25 °C)
 - At -20...+40 °C \pm (1.0 + 0.008 x reading)
 - At -40...+180 °C ±(1.5 +0.015 x readings)

Comments & Questions

If we don't get to your question today, we'll respond via email after the webinar.

Sample Specifications for 65 %RH at 23 °C

Specification	Instrument A	Instrument B	Instrument C	Instrument D
Accuracy		±0.8 %RH		
Accuracy Includes: - Non-linearity - Hysteresis - Repeatability	±1 %RH			±1.3 %RH + 0.003 *mv (± 1.495 %RH)
Measurement Uncertainty Includes: - Non-linearity - Hysteresis - Repeatability - Calibration Uncertainty			±1 %RH + 0.007 * mv (± 1.46 %RH)	
Calibration Uncertainty	±1 %RH	±0.5 %RH		
Annual Drift		< 1 %RH		

Normalizing Specifications

Instrument A

moet attricte / t					
Parameter	U	Distribution	Divisor	Standard Uncertainty	Comment
Accuracy (Linearity, Repeatability, Hysteresis)	1	Rectangular	1.732	0.577	From Data Sheet
Calibration Uncertainty	1	Normal	2	0.500	From Data Sheet
Annual Drift	1	Rectangular	1.732		From Historical Data Sheet

Combined Uncertainty

0.957

Expanded Uncertainty k=2 ±2.0 %RH

Instrument B

Parameter	U	Distribution	Divisor	Standard Uncertainty	Comment
Accuracy	0.8	Rectangular	1.732	0.462	From Data Sheet
					From Calibration
Calibration Uncertainty	0.5	Normal	2	0.250	Certificate
Annual Drift	1	Rectangular	1.732	0.577	From Data Sheet

Combined Uncertainty

0.780

Expanded Uncertainty k=2 ±1.6 %RH

Instrument C

instrument C						
Parameter	J	Distribution	Divisor	Standard Uncertainty	Comment	
Measurement Uncertainty (Linearity, Repeatability, Hysteresis, Calibration						
Uncertainty)	1.46	Normal	2	0.730	From Data Sheet	
Annual Drift	1	Rectangular	1.732	0.577	Best Estimate	

Combined Uncertainty

0.9307

Expanded Uncertainty k=2 ±1.9 %RH

Instrument D

Parameter	U	Distribution	Divisor	Standard Uncertainty	Comment
Accuracy (Linearity, Repeatability, Hysteresis)	1.5	Rectangular	1.732	0.863	From Data Sheet
		_			From Associated Calibrator Data
Calibration Uncertainty	0.6	Normal	2	0.300	Sheet
Annual Drift	1	Rectangular	1.732	0.577	Best Estimate

Combined Uncertainty

1.081

Expanded Uncertainty k=2 ±2.2 %RH

Takeaways

- The Accuracy Specification does not provide the whole picture of instrument performance, especially for long term performance (1 Year).
- Data Sheets are only the beginning to understanding instrument performance, they do not always contain all the information required to make an informed decision.
- The most important value of instrument performance is the 1 year performance value.

Comments & Questions

If we don't get to your question today, we'll respond via email after the webinar.

Humidity Academy

- Resources for making a better measurement
 - Psychrometric charts
 - Technical notes
 - Humidity calculator
 - Application notes
 - more

www.rotronic-usa.com/humidity-academy

Next Webinar

Traceability – What is it and How to Achieve it?

Thursday, January 14th 1:00PM EST

Register at www.rotronic-usa.com/humidity-webinars

Takeaways

- How does traceability affect the measurements that we take?
- How can I prove traceability of my measurements?
- How can I ensure that my suppliers are actually providing traceable calibration results?

Helping you make a better humidity measurement – and more.

- Humidity
- Carbon Dioxide
- Low Dew Point
- Water Activity
- Differential Pressure
- Monitoring systems for cGMP
- ISO 17025 calibrations (humidity and temperature)

Post webinar survey

Thank you!

email: info@rotronic-usa.com

US and South America: www.rotronic-usa.com

Canada: www.rotronic.ca

Outside Americas: www.rotronic.com

Future webinar registrations:

www.rotronic-usa.com/humidity-webinars

On demand

www.rotronic-usa.com/humidity-academy/humidity-webinars/webinars-on-demand/

