

Humidity – How to Make a Better Measurement

Webinar Presenters & Humidity Experts

Bruce McDuffee

Michael Boetzkes

Agenda & Takeaways

Agenda

- 1. Science of Humidity
- 2. Temperature effect
- 3. Pressure effect
- 4. Technology

Takeaways for a Better Measurement

- Knowledge helps avoid poor processes
- Temperature effects
- Pressure effects
- Avoid temperature inconsistencies
- Match technology to your application and requirements
- Know what your sensor is measuring and instrument calculating

Partial Pressure of Water Vapor (p)

aka vapor pressure

Dalton's Law of Partial Pressures:

• The total pressure of a gas mixture is equal to the sum of the partial pressures of the individual gas components.

$$P_t = P_1 + P_2 + P_3 +P_n$$

John Dalton

Saturation Vapor Pressure (p_s)

The saturation vapor pressure is the pressure of a vapor when it is in equilibrium with the liquid phase. It is solely dependent on the temperature. As temperature rises the saturation vapor pressure rises as well. - CMMAP.org

Relative Humidity

RH = p/p_s p=partial pressure p_s =saturation pressure

Temperature Effect on RH

RH Requires Uniform Temperature

- RH sensors are very sensitive to temperature.
- Measurement probe must be uniform temperature.
- Measurement point must be representative.

p=partial pressure p_s=saturation pressure

Why is temperature so critical?

- p (partial pressure) does not change as the temperature changes.
- p_s does change as temperature changes

RH =
$$p/p_s$$

p=partial pressure
p_s=saturation pressure

T	р	p _s	RH	Δ
40 °C	40 hPa	73.8 hPa	54.2%	
39 ℃	40 hPa	69.9 hPa	57.2%	+ 3.0%
41 °C	40 hPa	77.8 hPa	51.4%	- 2.8%
38 ℃	40 hPa	66.3 hPa	60.3%	+ 6.1%
42 °C	40 hPa	82 hPa	48.8%	- 5.4%

The RH Measurement Challenge

Non-representative sources of heat or cold

 Non-uniform temperature between measurement device and gas being measured.

T = 40C

RH = 50%

T = 39C [3% error] What is the meter reporting?

RH = 30%

Causes of the Temperature Effect

- Standing too close to the point of measurement
- Holding the probe in your hand
- Probe is colder or warmer than the ambient air
- Not waiting long enough for temperature equilibrium
- Cooling fans for equipment
- Direct air flow from HVAC

What about pressure?

Pressure Effects

- RH not affected unless pressure varies in same air stream.
- Dew point is affected by pressure
- Be sure pressure is input to instrument for absolutes (ppm, x)

Dew Point and Pressure

- Pressure increases dew point temperature goes up
- Pressure decreases dew point temperature goes down
- Be aware of pressure differences between point of interest and point of measure

Pressure Effects on Parameters

- Dew point yes
- Wet bulb temperature no
- Mixing ratio no
- PPM no

Know what your sensor is measuring!

Comments & Questions

If we don't get to your question today, we'll respond via email after the webinar.

Technology

Psychrometer (wet-bulb)

Parameters	Measures	Calculates
Relative Humidity		X
Dry Bulb Temperature	X	
Wet Bulb Temperature	X	
Dew Point		X
Frost Point		X
Vapor Pressure of Water		X

- requires 2 temperature sensors
- one is covered with wet sock
- depression indicates RH

Psychrometer Applications

Environmental Chamber

- Control Sensor
- Considerations
 - Clean water available for wet bulb
 - Constant air flow over sensors
 - Calculated RH
 - Temperature gradients in chamber
 - Does evaporation from wet bulb affect chamber RH

Capacitive Sensors

Parameters	Measures	Calculates
Relative Humidity	X	
Dry Bulb Temperature	X*	
Wet Bulb Temperature		X
Dew Point		X
Frost Point		X
Vapor Pressure of Water		X

- As the relative humidity increases, the capacitance increases.
- * this is a separate sensor in the probe

Electronic Humidity Sensor

Capacitive Sensor Applications

Process Control/Monitoring Systems/HVAC/Weather

 Monitor/control storage facilities, server rooms, clean rooms, meeting rooms, office or warehouse space

Considerations

- Directly measure T and RH
- Heat sources (lights, HVAC, equipment)
- Humidity sources (people)

Chilled Mirror or Condensation Hygrometer

Parameters	Measures	Calculates
Relative Humidity		X
Dry Bulb Temperature	X**	
Wet Bulb Temperature		
Dew Point	X	X*
Frost Point	X	
Vapor Pressure of Water		X

 Dew point temperature is determined by the temperature of the mirror when dew or frost forms.

Image source: Thunder Scientific

Chilled Mirror Application

Calibration Laboratory

- Reference instrument for RH Calibrations
 - Low uncertainties
- Considerations:
 - RH calculated based on Temperature, Dew/Frost Point, Pressure
 - Temperature, Pressure Gradients
 - Dew Point or Frost Point being measured
 - Condensation in sampling tubes

Metal Oxide

Parameters	Measures	Calculates
Relative Humidity		X
Dry Bulb Temperature	X	
Wet Bulb Temperature		X
Dew Point		X
Frost Point		X
Vapor Pressure of Water	X	

- Aluminum Oxide (Al₂O₃) most common
- Water vapor adsorbs to oxide
- Gives an absolute measure
- Need pressure and temperature for conversions
- Trace moisture into ppb or -120C

Image source: Sensor Magazine

Aluminum Oxide Application

- Very Dry Compressed Air
- Nitrogen
- Considerations:
 - Air should be very dry (-40)
 - Air should be very clean
 - Dryer should be very reliable
 - Can measure as low as -120C dew point

Summary of Takeaways

Takeaways for a Better Measurement

- Knowledge helps avoid poor processes
- Temperature & RH matters
- Pressure considerations
- Avoid temperature inconsistencies & anomalies
- Match technology to your application and requirements
- Know what the sensor is measuring and calculating

Comments & Questions

If we don't get to your question today, we'll respond via email after the webinar.

Humidity Academy

- Resources for making a better measurement
 - Psychrometric charts
 - Technical notes
 - Humidity calculator
 - Application notes
 - more

Next Webinar

Calibration of Humidity Instruments

Thursday, June 15th 1:00PM EDT

Post webinar survey

Thank you!

email: info@rotronic-usa.com

Rotronic US: www.rotronic-usa.com

On Demand Webinars – Humidity Academy

