

Dew Point in Compressed Air

Helping you make a better measurement.

Webinar Presenters & Humidity Experts

Bruce McDuffee

Michael Boetzkes

Agenda & Takeaways

Agenda

- Definition of Dew Point
- Pressure Effect
- ISO Air Classes & Dryers
- Desiccant Dryers and Efficiency
- Water in Air practical example
- Summary

Takeaways

- Understanding the parameter helps to make a better measurement and prevent water.
- Learn the cause of liquid water in the system.
- Understand how pressure affects the measurement.
- Understand dryer performance and dew point.

Definition of Dew Point

Definition of Dew Point Temperature

- Dew point temperature is the temperature at which water vapor will begin to condense.
- The temperature at which a moist gas is saturated over a plane surface of pure liquid water.

Note – Dew point temperature does not change as temperature changes.

What about Frost Point?

- The temperature at which a moist gas is saturated over a plane surface of pure ice.
- Which one are you measuring?
- Which one matters in compressed air?

Note – Dew point is lower than frost point (by about 4C at -40).

Why Is Dew Point Temperature so Important?

- Water in compressed air causes problems.
- If Dp reaches ambient temperature, condensation occurs.
- Dew point temperature changes with pressure and with dryer performance.

Pressure Effects

Pressure Effects on Dew Point

Rule of thumb:

- As pressure increases, dew point temperature rises and approaches saturation.
- As pressure decreases, dew point temperature goes lower and the air becomes dryer (relatively speaking)

Pressure Dew Point vs Atmospheric Dew Point

- **Pressure Dew Point** is the dew point at the actual pressure.
- Atmospheric Dew Point is what that dew point would be if the air were expanded to atm pressure or 0 psig.

 Know what your hygrometer is reporting – pressure Dp or Atm Dp.

How do You Know ATM or Pressure?

- Is the probe on the pressure line?
- Is there a sample line from the main line?
- Is there a regulator?

What if you have to convert?

What if you have to convert?

Comments & Questions

If we don't get to your question today, we'll respond via email after the webinar.

Application

Where Should you Measure Dew Point?

Air Classification - ISO 8573.1 (pressure dew point only)

Class	Particles max in microns	Dew Point C	Dew Point F	Oil mg/m³
1	0.1	-70	-94	0.01
2	1	-40	-40	0.1
3	5	-20	-4	1
4	15	3	38	5
5	40	7	45	>5
6	-	10	50	_

Heatless Desiccant Dryers Dew Point

Dewpoint Demand Switching

- Heatless regenerative dryers
- High cost in purge air is reduced
- Some HDD consume up to 15% of their rated capacity in purge air without DDS.

For example:

- If a dryer is rated for -40 Dp at 1000 cfm, it requires 150cfm just for purge air.
- This is equal to a 35HP compressor running 24/7 just to purge the dryer.

Practical Examples

Practical Example – will it freeze?

Case:

Atmospheric Dew point = 38°F
Inside temperature is 77°F
Airline goes outside in 30°F
Compressed air lines at 100 psig

- Dew point instrument reads -20°F DP from sample of gas taken from system
- Will the lines freeze?

Practical Example – will it freeze?

Critical Information

Atm DP: -20°F

Pressure: 100 psig

Lowest Temperature: 30°F

Pressure DP: ???

Practical Example – will it freeze?

Calculate

Mixing Ratio: 0.00034782 kg/kg

Pressure DP: 24.1°F

Pressure DP (24.1°F) < Outside Temperature (30°F) No Ice!

Practical Example: What is your real dew point temperature?

Case:

- Pressure is 70psig
- Dew point is +2F

Practical Example: What is your real dew point temperature?

Case:

- Pressure is 70psig
- Dew point is +2F

- Pressure dew point is +39F at 70psig
- At 90 psig dew point is +45F

Comments & Questions

If we don't get to your question today, we'll respond via email after the webinar.

Next Webinars

Humidity Theory, Terms & Tips

Thursday, November 16, 1:00PM EST

Humidity Measurement Technology Pros & Cons

Thursday, December 21, 1:00PM EST

How to Choose a Best-fit Humidity Instrument

Thursday, January 18, 1:00PM EST

Thank you!

Email: info@rotronic-usa.com

Website: www.rotronic.com

